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Abstract: This research explores the implementation of Artificial Neural Network (ANN)-based 

controllers for single-area Load Frequency Control (LFC) in power systems. While Proportional-

Integral-Derivative (PID) controllers are commonly utilized, their limitations in addressing dynamic 

and non-linear scenarios underscore the necessity for adaptive control approaches. This study 

evaluates the performance of conventional PID controllers, ANN-PID controllers, Jaya Algorithm-

optimized PID controllers, and ANN-Jaya-PID controllers. MATLAB Simulink is used to simulate 

and implement various control strategies. The ANN model is trained using simulation-generated 

data to accurately predict controller behavior under fluctuating load conditions. The Jaya Algorithm 

is applied to optimize the PID parameters, thereby enhancing the controller's effectiveness in 

maintaining frequency stability. The results indicate that the ANN-Jaya-PID controller delivers 

superior performance compared to the other configurations, achieving faster settling times and 

reducing overshoot and undershoot during load disturbances. Furthermore, the Jaya optimization 

notably enhances the robustness of the LFC system, particularly in managing the non-linear 

characteristics of contemporary power grids. 

Keywords: Artificial Neural Network, Load Frequency Control, Jaya Algorithm, PID controller 

Abstract (Malay): Kajian ini menyelidik penggunaan pengawal berasaskan Rangkaian Neural 

Buatan (Artificial Neural Network, ANN) untuk Kawalan Beban Frekuensi (Load Frequency 

Control, LFC) dalam sistem kuasa bagi kawasan tunggal. Pengawal Proportional-Integral-

Derivative (PID) konvensional telah digunakan secara meluas, namun ia menghadapi kekangan 

apabila berhadapan dengan keadaan dinamik dan tidak linear, yang menunjukkan keperluan untuk 

strategi kawalan yang adaptif. Kajian ini menilai prestasi pengawal PID konvensional berbanding 

pengawal ANN-PID, PID yang dioptimumkan melalui Algoritma JAYA, serta pengawal ANN-

JAYA-PID. Strategi kawalan yang berbeza ini dilaksanakan menggunakan perisian MATLAB 

Simulink. Model ANN dilatih berdasarkan data daripada simulasi sistem bagi memastikan ia dapat 

meramalkan tingkah laku pengawal dengan tepat dalam pelbagai keadaan beban. Algoritma JAYA 

digunakan untuk mengoptimumkan parameter PID, seterusnya meningkatkan keupayaan pengawal 

dalam mengekalkan kestabilan frekuensi. Hasil kajian menunjukkan bahawa pengawal ANN-JAYA-

PID mengatasi konfigurasi lain dengan mencapai masa kestabilan yang paling pantas, disamping 

meminimumkan lonjakan dan penurunan dari nilai sasaran yang ditetapkan semasa berlaku 

gangguan beban. Selain itu, pengoptimuman menggunakan Algoritma JAYA secara signifikan 

meningkatkan keteguhan sistem LFC, terutamanya menghadapi cabaran ketidaklinearan yang 

wujud dalam rangkaian grid kuasa moden. 

 

Kata Kunci: Rangkaian Neural Buatan, Kawalan Beban Frekuensi, JAYA Algorithm, Pengawal 

PID 
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1. Introduction  

Maintaining nominal frequency and tie-line power is vital 

for ensuring continuous power delivery within power systems 

(Shrestha & Gonzalez-Longatt, 2021). Fluctuations in active 

power resulting from varying load demands affect system 

frequency, while reactive power predominantly impacts 

voltage magnitude. Controlling frequency deviations is 

essential to achieving load-generation balance and 

maintaining overall system stability. As the demand for 

efficient and reliable power system operations grows, accurate 

load frequency control (LFC) becomes increasingly critical 

for maintaining system frequency and power flow near 

nominal levels (Memane et al., 2018). Proportional-Integral-

Derivative (PID) controllers are widely adopted in the industry 

due to their simplicity and ease of implementation (Anwar & 

Pan, 2013).  
The integration of renewable energy sources (RES) into 

power grids has heightened the need for adaptive and efficient 
LFC mechanisms (Wang et al., 2019). Artificial intelligence 
(AI) techniques offer a promising solution to address this 
challenge. Among these, Artificial Neural Network (ANN)-
based control has gained attention for its learning capabilities 
and ability to approximate complex functions. Additionally, 
researchers have explored Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS) and fuzzy logic-based controllers to manage 
the inherent non-linearities and complexities of LFC (Jood et 
al., 2019).  

Although PID controllers are extensively utilized in power 
systems for LFC, their effectiveness is limited by several 
factors. A significant limitation is their sensitivity to parameter 
tuning, particularly in systems characterized by non-linearities 
and external disturbances (Saini & Ohri, 2023). Furthermore, 
PID controllers often struggle to maintain optimal performance 
under varying load conditions and system parameters, leading 
to substantial frequency deviations and prolonged settling 
times (Mohammed & Dodo, 2023). Simulation studies have 
shown that these controllers exhibit slower response times and 
larger overshoots when faced with abrupt load changes (Putra 
et al., 2023). 

To overcome these challenges, advanced control strategies 
and optimization techniques have been developed. Nature-
inspired algorithms, such as Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), and Bat Algorithm (BA), 
have demonstrated their ability to enhance PID parameter 
tuning, thereby improving frequency stability and reducing 
overshoot. However, the increasing complexity and variability 
of modern power grids, driven by the growing penetration of 
RES like wind and solar power, present additional challenges. 
The reduced system inertia and heightened sensitivity to load 
and generation variations exacerbate issues related to 
frequency stability and voltage profiles (El-Sousy et al., 2023). 
One recent optimization technique, the JAYA algorithm, has 
shown promise in addressing these challenges. The JAYA 
algorithm, a gradient-free optimization method, iteratively 
refines candidate solutions by steering them toward the best 
solution while avoiding the worst. Its straightforward design 
and minimal control parameters make it an effective tool for 
solving various optimization problems, including LFC. When 
applied to LFC, the JAYA algorithm has demonstrated its 
ability to optimize control parameters, enhancing system 
stability and performance. Comparative studies indicate that 
the JAYA algorithm outperforms methods like PSO in certain 
scenarios, further highlighting its robustness and efficiency in 
power system applications (Qu et al., 2024). 

Optimization using the Jaya algorithm has demonstrated 
superior efficacy in minimizing integral time-multiplied 
absolute error (ITAE) values, a critical metric for ensuring 
frequency stability and achieving faster convergence under 
varying load conditions (El-Sehiemy et al., 2023). The 

algorithm’s robustness and precision are further underscored in 
its application to Automatic Generation Control (AGC) of 
interconnected power systems with diverse energy sources, 
where it surpasses other methodologies in terms of system 
settling time, overshoot, and undershoot performance metrics 
(Pahadasingh et al., 2022).  

Fuzzy logic-based controllers have gained traction in Load 
Frequency Control (LFC) due to their capability to manage 
non-linearities and uncertainties. However, these controllers 
face notable challenges, particularly in the tuning of fuzzy rules 
and membership functions, which can become complex and 
time-intensive, especially in large-scale systems comprising 
multiple areas and energy sources (Shangguan et al., 2021). 
Similarly, Artificial Neural Network (ANN)-based control 
systems have exhibited significant advantages over traditional 
controllers, such as PID controllers, especially in terms of 
performance and adaptability. While PID controllers are valued 
for their simplicity and robustness, their fixed structure limits 
their effectiveness in addressing nonlinear systems, time-
delayed linear systems, and time-varying systems (Efheij & 
Albagul, 2021).  

ANNs can be categorized into two primary types 
feedforward and feedback networks distinguished by their 
structural mapping architectures. Among these, feedforward 
networks are the most prevalent in deep learning applications, 
owing to their foundational role and adaptability across a broad 
range of domains. Notably, the initialization of weights in 
feedforward networks has a substantial impact on training 
efficiency and performance, with critical line initialization 
demonstrating faster convergence rates and improved 
scalability (Cardona, 2023).  

Despite their potential, ANN-based LFCs encounter 
significant challenges, particularly the complexity involved in 
training these models for multi-area power system networks 
(PSNs) characterized by substantial load demand variations. 
Addressing this complexity often requires advanced 
optimization methods, such as particle swarm optimization 
(PSO), to determine the optimal number of nodes and initialize 
neurons effectively, processes that can be computationally 
demanding and time-intensive (Al-Majidi et al., 2022). 

Traditional PID controllers, on the other hand, necessitate 
meticulous parameter tuning, which becomes challenging in 
systems subject to frequent load changes and parameter 
variations (Saba et al., 2023). Conversely, optimal ANN-PID 
controllers offer a more dynamic solution by adapting to these 
variations in real-time. ANN models can learn and predict 
system behaviors, facilitating real-time optimization of PID 
parameters, which enhances the controller’s robustness and 
overall performance. This adaptability is particularly crucial in 
interconnected power systems experiencing frequent load 
demand fluctuations. In this paper: 

• The performance of traditional PID controllers is 
evaluated in comparison to advanced ANN-based 
controllers, with an emphasis on their effectiveness in 
handling load variations. 

• The study explores the incorporation of JAYA 
optimization to enhance the tuning of PID parameters 
and to improve the ANN's ability to predict optimal 
controller responses under varying load conditions 

 
The LFC is designed using an ANN-based technique, where 
the PID controller parameters are optimized with the Jaya 
Algorithm for a single-area power system. The training data for 
the ANN model are generated and analyzed from the proposed 
optimization process, as illustrated in Fig. 1. 
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Figure 1: Work Strategy Process 

 

2. System Background 

2.1   Single Area LFC Model 

        Load Frequency Control (LFC) modelling plays a vital 

role in analyzing a power system's dynamic response to load 

fluctuations and disturbances. Its primary purpose is to 

maintain the balance between power supply and load demand, 

ensuring the system frequency remains within permissible 

limits. The LFC model accounts for the dynamic interactions 

between governors, turbines, and load behavior, while 

simplifying the analysis by disregarding nonlinearities for  

ease of implementation (Roca et al., 2022). Fig. 2 illustrates 

the single-area LFC model for a thermal power system).  

 

 
 
 

Figure 2: Single Area LFC Model For A Thermal Power 
System 

In this study, various methods were employed to evaluate 
the performance of the proposed controller for the single-area 
load frequency control (LFC) model. The controllers assessed 
include a PID controller tuned using the MATLAB Tuner, an 
ANN-PID controller, a JAYA-optimized PID controller, and 
an ANN-JAYA-PID controller. These were analyzed in terms 
of maximum overshoot, maximum undershoot, and transient 
time during step load changes. System parameters were 
collected both before and after the controller block to train the 
ANN controller for Controller 2 and Controller 4, ensuring the 
ANN was trained using the tuned and optimized controllers 
simulated in Controller 1 and Controller 3. The parameters of 
the single-area model are detailed in Table 1. 

 

Table 1: System Parameters LFC 

LFC system parameters Values 

Generator power output, 𝐏𝐨𝐮𝐭 250MW 
System frequency, Hz 60 Hz 
Speed regulation, R 15 pu 
Governor time constant, 𝐓𝐠  0.3 Sec 

Turbine time constant, 𝐓𝐭 
Turbine reheat constant, 𝐊𝐫 
Turbine reheat time constant, 𝐓𝐫 

0.5 Sec 
0.5 Sec 
12 Sec 

Inertia constant, H 5 Sec 

 

2.2    System Controllers 

This study utilizes a PID controller to optimize the Load 

Frequency Control (LFC) system. The controller adjusts the 

Area Control Error (ACE) by employing proportional, 

integral, and derivative components of the error signal. The 

ACE quantifies the deviation between the system's desired and 

actual outputs. The proportional component addresses the 

current error, the integral component accumulates past errors 

to eliminate steady-state discrepancies, and the derivative 

component anticipates future errors by analyzing the rate of 

change, thereby improving the system's stability and dynamic 

response. The key parameters of the PID controller are the 

proportional gain (Kp), integral time constant (Ti), and 

derivative time constant (Td). Fig. 3 presents the block 

diagram of the PID controller applied to LFC. 

 

 
     Figure 3: PID Controller Designed For LFC 

The time-domain representation of the PID controller's 
output is expressed in Eq. 1: 

 𝑢(𝑡) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
               (1) 

In this equation, 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 denote the proportional, 

integral, and derivative gains of the controller, respectively, 
while 𝑒(𝑡) represents the error signal (ACE) for the load 
frequency control (LFC).  

 

3. System Methodology 

3.1   Jaya Optimization Algorithm 

 The Jaya optimization algorithm is employed to tune the 
PID parameters for the Load Frequency Control (LFC). In this 
study, a population size of 10 and 100 iterations were selected. 
The three design variables under consideration are Kp1, Ki1 
and Kd1. Each candidate solution ‘x’ within the population 
represents a set of these design variables (Kp1, Ki1, Kd1). The 
best solution ‘Best’ in the population for a given iteration is 
identified by the minimum value of the objective function, 
while the worst solution ‘Worst’ corresponds to the maximum 
value. The modified solution ‘xnew’ is generated by updating 
the positions of candidate solutions relative to the Best and 
Worst solutions. This modification involves adjusting the 
design variables to improve the objective function's value. The 
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candidate solution ‘x’ is then replaced by ‘xnew’ if the latter 
provides a better objective function value ‘fnew’. 

The search space is constrained by predefined minimum 
and maximum parameter values. Initial populations are 
generated within these bounds, and the objective function 
evaluates the error in the system's frequency response. The Jaya 
algorithm identifies the Best and Worst solutions in each 
generation and updates the candidate solutions iteratively. This 

process ensures convergence towards the optimal 
proportional (𝐾𝑝), integral (𝐾𝑖), and derivative (𝐾𝑑) 

gains required for regulating the LFC system frequency. 
The methodology for implementing the Jaya algorithm to 

determine the optimal PID parameters is depicted in Figure  4. 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

Start 

Setting population size, number of design 

variables, and the number of iterations 

Identified the best and worst candidate solutions 

from initial population as: 𝑓(𝑋)𝐵𝑒𝑠𝑡  and 𝑓(𝑋)𝑊𝑜𝑟𝑠𝑡 

Is the solution 

corresponding to 𝑋𝑗 ,𝑘 ,𝑖
′  

better than solution 

𝑋𝑗 ,𝑘 ,𝑖? 

Safe and keep 

𝑋𝑗 ,𝑘 ,𝑖  

Safe and replace 

𝑋𝑗 ,𝑘 ,𝑖  with 𝑋𝑗 ,𝑘 ,𝑖
′  

Number of 

iterations 

completed? 

Optimal solution 

is obtained 

Exit 

Consider the new set 

of solutions as the 

initial population 

Iteration = 

Iteration + 1 

No Yes 

No 

Yes 

Based on 𝑓(𝑋)𝐵𝑒𝑠𝑡  and 𝑓(𝑋)𝑊𝑜𝑟𝑠𝑡 solutions, modify the decision  

variables using the equation: 

𝑋𝑗 ,𝑘 ,𝑖
′ =  𝑋𝑗 ,𝑘 ,𝑖 + 𝑟1,𝑘 ,𝑖 𝑋𝑗 ,𝑏𝑒𝑠𝑡,𝑖 −  𝑋𝑗 ,𝑘 ,𝑖   − 𝑟2𝑘,𝑖(𝑋𝑗 ,𝑤𝑜𝑟𝑠𝑡,𝑖 −  𝑋𝑗 ,𝑘 ,𝑖 ) 

 

Generate PID parameters: 𝐾𝑝 ,𝐾𝑖 ,𝐾𝑑 , and 

evaluate objective function, 𝑓(𝑋) 
 
 

 

Figure 4: Flow Chart of JAYA Algorithm Applied To 
LFC 

 

3.2   Artificial Neural Network 

  The integration of Artificial Neural Networks (ANNs) 
into Load Frequency Control (LFC) systems significantly 
enhances their performance by leveraging adaptive learning 
capabilities. This integration enables the ANN controller to 
learn the LFC model’s behavior by training on its input and 
output data. The primary objective is to accurately predict the 
controller’s output signal based on the Area Control Error 
(ACE).  

Fig. 5 illustrates the typical architecture of an ANN model. 
A feedforward ANN structure consists of three primary layers: 
input, hidden, and output. Depending on the number of layers, 
ANN models can be categorized into three types: single-layer, 
multi-layer, and radial-layer networks. Among these, multi-
layer feedforward networks are widely applied in machine 
learning due to their biologically inspired architecture, which 
facilitates data reception, processing, and transmission, 
mimicking neural functions in the brain. The layers are 
interconnected through neurons, with weights and biases 
determining the strength of these connections. The weighted 

summation of inputs is calculated using mathematical 
operations, as described in Eq. (2): 

                           𝑆𝑗 =  ∑𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑗

𝑛

𝑖=1

                                        (2) 

𝑥𝑗  represent the input signal value, 𝑤𝑖𝑗 denotes the weights 

between connected layers, 𝑏𝑗 is the weight value attributed to 
the nodes, and n is the total number of input signal. The 

backpropagation (BP) algorithm is typically employed to 
adjust these initial weights. The sigmoid activation 
function, often used to detect the output signal, is 
mathematically expressed in Eq. (3): 

                               𝑓(𝑠) =  
1

1 + 𝑒−𝑠𝑗
                                         (3) 

The core principle of this methodology lies in optimizing 
ANN performance by iteratively refining the weights of 
interconnections. This process generates output signals through 
predictive computations based on gradient descent, 
incorporating weight adjustments (Δ𝑤), as detailed in Eq. (4). 

            (𝑡) =  𝜂𝑤𝑗𝑖
𝑙 (𝑡 − 1) +  𝜇 Δ𝑤𝑗𝑖

𝑙 (𝑡)                         (4) 

In this equation, 𝑤𝑗𝑖
𝑙 (𝑡) represents the current training weight, 

𝑤𝑗𝑖
𝑙 (𝑡 − 1) is the previous training weight, whereas η is the 

learning rate, and μ is the momentum coefficient. The BP 
algorithm operates in two stages: forward propagation and 
backward propagation. During each iteration, the weights of 
the ANN are continually updated, and the mean squared error 
(MSE) between the predicted and actual values is calculated 
using Eq. (5): 

         M𝑆𝐸 =  
1

𝑛
 ∑ ∑ [𝑌𝑗(𝑖) − 𝑇𝑗(𝑖)]

2𝑚
𝑗=1

𝑛
𝑖=1                            (5) 

where variables n and m represent the number of input data 
points and output signals, respectively, while 𝑌𝑗(𝑖) and 

𝑇𝑗(𝑖) denote the actual and predicted outputs. 

Figure 5: Structure of artificial neural network (ANN) 

 

4. Results and Simulation 

 The performance of load frequency control for a single-

area power system network was evaluated using MATLAB 

Simulink. The study compared four control strategies: 

conventional PID, ANN-PID, JAYA-optimized PID, and 

ANN-JAYA-PID. Simulations were conducted over a 

duration of 30 seconds, with step-load disturbances of 10% 

and 20% introduced at t = 5 seconds.  
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  Tables 2 and 3 present the results for these step-load 

perturbations, including metrics such as maximum overshoot, 

maximum undershoot, transient time, and ITSE value. The 

findings demonstrate that the proposed ANN-based controller 

effectively trains and predicts outcomes that closely align with 

the optimized values. Specifically, Table 2 highlights the 

performance under a load variation of 0.1 p.u. For the PID 

controller tuned in MATLAB, the gain parameters are 

provided K_p= 1.9809, K_i = 7.8513 and K_d= 0.1200 

whereas the JAYA-optimized PID controller achieves gains of 

K_p= 5.000, K_i = 2.4596 and K_d= 0.2506. 

 
Table 2: Comparison Performance for SLP=0.1 P.U 

No. Controller Type Transient 
time (s) 

Overshoot 
(pu) 

Undershoot 
(pu) ITSE 

1 PID 
Controller 6.4413 0.0168 -0.0500 0.2072 

2 ANN 
tuned PID 6.1177 0.0129 -0.0480 0.5830 

3 
JAYA 
Optimized 
PID 

5.4806 0.0066 -0.0500 0.1599 

4 ANN- 
JAYA-PID 5.7914 0.0051 -0.0490 0.2506 

 
Table 3: Comparison Performance for SLP=0.2 P.U 

No. Controller Type Transient 
time (s) 

Overshoot 
(pu) 

Undershoot 
(pu) ITSE 

1 PID 
Controller 6.4430 0.0336 -0.1000 0.8282 

2 ANN tuned 
PID 6.3789 0.0232 -0.0934 8.4830 

3 
JAYA 
optimized 
PID 

5.4716 0.0135 -0.1000 0.6393 

4 ANN- 
JAYA-PID 5.9931 0.0121 -0.0978 1.1770 

 
The comparative profiles of frequency deviation in a 

single-area power system for all the controllers following an 
SLP of 10% and 20% are shown in Fig. 6-7. System based on 
ANN-based controller manages to deliver results close to those 
of an optimized controller.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: System response for all the controllers at 
10% SLP 

Controller based on ANN JAYA optimized PID gives 

better results compared to conventional ANN in terms of 

overshoot, transient time, and ITSE error. Fig.8-9 shows the 

comparison between the conventional ANN PID and ANN 

JAYA PID at SLP 0.1 and 0.2 respectively. Overall, the 

maximum overshoot of ANN JAYA is reduced than the 

conventional. This indicates that the ANN-JAYA-PID 

controller has better performance in minimizing the initial 

deviation from the setpoint. Further observed the transient 

time for ANN JAYA is shorter where it reaches the steady  

Figure 7: System response for all the controllers at 
20% SLP 

state more quickly, improving the system's overall response. 

The ITSE value for ANN JAYA was reduced by more than 

50% providing better overall system performance by reducing 

the cumulative squared error over time.  

 

 

 

 

teaching. For instance, in TVET education, TPACK enables 

instructors to integrate cutting-edge technologies while 

aligning with pedagogical strategies and subject matter, 

thereby enhancing delivery and student engagement. By 

fostering a nuanced understanding of these relationships, the 

TPACK framework serves as a vital tool for developing 

techno-pedagogical competencies among TVET instructors, 

ultimately improving their teaching performance and 

adaptability to industry trends (Dayangku Suraya, 2020; 

Mishra & Koehler, 2006). 

Figure 8: Comparison of Frequency Response for 
Conventional ANN and ANN JAYA for 10% SLP 

Figure 9: Comparison of Frequency Response for 

Conventional ANN and ANN JAYA for 20% SLP 

 

 To further investigate the robustness of the designed 

controller, the SLP for both ANN controllers varied between -

20% to +20%. The system response in Table 4-7 shows that 

the controller was successfully generalized from the training 

data and can effectively handle load variation. The results 

indicate that the designed controller is resilient to such 

uncertainties. 
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Table 4: Performance of ANN PID Controller when 
Fluctuation at SLP 0.1 

Fluctuation 

in SLP 
SLP 

Transient 

Time (s) 

Max.Ov

s (p.u) 

Max. 

Undershoot 

(p.u) 

ITSE 

Decrease 

20% 

0.08 6.1571 0.0089 -0.03647 2.2870 

Decrease 

10% 

0.09 6.2540 0.0095 -0.04147 2.0490 

ANN 

reference 

model 

0.10 6.2487 0.0110 -0.04647 1.8380 

Increase 10% 0.11 6.8944 0.0122 -0.05147 1.6520 

Increase 20% 0.12 6.7011 0.0189 -0.05647 1.7120 

 
Table 5: Performance of ANN PID Controller when 

Fluctuation at SLP 0.2 

Fluctuation 

in SLP 
SLP 

Transient 

Time (s) 

Max.Ov

s (p.u) 

Max. 

Undershoot 

(p.u) 

ITSE 

Decrease 

20% 
0.18 6.6225 0.0204 -0.08336 9.0580 

Decrease 

10% 
0.19 7.053 0.0227 -0.08836 8.7390 

ANN 

reference 

model 

0.20 6.3789 0.0232 -0.09336 8.4830 

Increase 10% 0.21 6.4182 0.0231 -0.09836 8.2410 

Increase 20% 0.22 6.3236 0.0248 -0.1034 8.0150 

 

As seen in Table 4 and Table 5, the ANN PID controller 
demonstrates increasing maximum overshoot and undershoot 
values with higher fluctuations in SLP, indicating heightened 
sensitivity to changes in load conditions. For instance, at a 20% 
increase in SLP from the reference model in Table 4 (SLP = 
0.12), the maximum overshoot rises to 0.0189 pu, while the 
maximum undershoot deepens to -0.05647 pu, with a transient 
time of 6.7011 seconds and an ITSE of 1.7120. Similarly, in 
Table 5, at a 20% increase in SLP from the reference model 
(SLP = 0.22), the maximum overshoot further increases to 
0.0248 pu, and the undershoot reaches -0.1034 pu, with a 
transient time of 6.3236 seconds and an ITSE of 8.0150. These 
trends highlight the ANN PID controller's dependence on 
precise load condition modelling and its potential vulnerability 
to substantial load fluctuations. 

Table 6: Performance of ANN JAYA PID Controller 
when Fluctuation at SLP 0.1 

Fluctuation 

in SLP 
SLP 

Transient 

Time (s) 

Max.Ov

s (p.u) 

Max. 

Undershoot 

(p.u) 

ITSE 

Decrease 

20% 
0.08 5.5995 0.0030 -0.03902 0.2311 

Decrease 

10% 
0.09 5.8144 0.0044 -0.04402 0.2390 

ANN 

reference 

model 

0.10 5.7914 0.0051 -0.04902 0.2506 

Increase 10% 0.11 5.7953 0.0058 -0.04927 0.2524 

Increase 20% 0.12 5.8028 0.0052 -0.04942 0.2520 

 

 

 

 

 

 

 

Table 7: Performance of ANN JAYA PID Controller 
when Fluctuation at SLP 0.2 

Fluctuation 

in SLP 
SLP 

Transient 

Time (s) 

Max.Ov

s (p.u) 

Max. 

Undershoot 

(p.u) 

ITSE 

Decrease 

20% 
0.18 6.0411 0.0097 -0.08779 1.1370 

Decrease 

10% 
0.19 5.9396 0.0105 -0.09279 1.1530 

ANN 

reference 

model 

0.20 5.9931 0.0121 -0.09779 1.1770 

Increase 10% 0.21 5.7911 0.0122 -0.09804 1.1780 

Increase 20% 0.22 5.9925 0.0123 -0.09819 1.1790 

 

Performance of the ANN JAYA PID controller 
demonstrates significantly improved robustness and 
adaptability to fluctuations in SLP when compared to the ANN 
PID controller. This is evidenced by notably lower maximum 
overshoot and undershoot values across various SLP 
conditions. For instance, at a 20% decrease in SLP from the 
reference model with an initial SLP of 0.1, the ANN JAYA PID 
controller achieves a maximum overshoot of only 0.0030 pu 
and a maximum undershoot of -0.03902 pu. Similarly, with an 
initial SLP of 0.2 under a 20% decrease, the maximum 
overshoot is 0.0097 pu, and the maximum undershoot is -
0.08779 pu. These values reflect a significant reduction in 
transient oscillations, thereby ensuring better stability and 
lower integral time square error (ITSE). Additionally, the 
transient times remain consistently low across scenarios, 
further emphasizing the controller's efficiency in stabilizing the 
system. 

 

5.   Conclusion 

      The study successfully demonstrates the integration of an 

ANN-based controller with a Jaya Algorithm optimized PID 

controller for a single area thermal system of the LFC model. 

The performance of different controllers was observed to 

validate the robustness of the ANN controller. The proposed 

PID controller, tuned using the Jaya optimization algorithm, 

shows superior performance compared to conventional 

methods. The robustness of the ANN-designed controller is 

validated across various load conditions, where its 

performance remains consistently close to the trained ANN 

model. Simulation results reveal that the ANN-JAYA PID 

controller significantly outperforms the ANN-PID controller 

by exhibiting lower overshoot, reduced transient response 

time, and improved overall system performance, as indicated 

by the Integral Time Square Error (ITSE). The ANN-JAYA 

PID controller achieves a reduction in overshoot by 60%, a 

decrease in transient time by 0.33 seconds, and an 

enhancement in ITSE by 57% for SLP 0.1. Where else for SLP 

0.2, ANN-JAYA PID controller reduces overshoot by 47%, 

shortens the transient time by 0.39 seconds, and an 

enhancement in ITSE by 86%. These results highlight the 

potential of integrating ANN-based control strategies with 

advanced optimization techniques like Jaya Algorithm to 

achieve nearly optimal performance across a wide range of 

operating conditions. 
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